Effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model
نویسندگان
چکیده
Articles you may be interested in Decay of the supersonic turbulent wakes from micro-ramps The interaction of helical tip and root vortices in a wind turbine wake Distribution of spanwise enstrophy in the near wake of three symmetric elongated bluff bodies at high Reynolds number Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers Phys. Effect of initial conditions on interaction between a boundary layer and a wall-mounted finite-length-cylinder wake An experimental investigation was conducted to examine the effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model. The experimental study was performed in a large-scale wind tunnel with a scaled three-blade Horizontal Axial Wind Turbine model placed in two different types of Atmospheric Boundary Layer (ABL) winds with distinct mean and turbulence characteristics. In addition to measuring dynamic wind loads acting on the model turbine by using a force-moment sensor, a high-resolution Particle Image Velocimetry system was used to achieve detailed flow field measurements to characterize the turbulent wake flows behind the model turbine. The measurement results reveal clearly that the discrepancies in the incoming surface winds would affect the wake characteristics and dynamic wind loads acting on the model turbine dramatically. The dynamic wind loads acting on the model turbine were found to fluctuate much more significantly, thereby, much larger fatigue loads, for the case with the wind turbine model sited in the incoming ABL wind with higher turbulence intensity levels. The turbulent kinetic energy and Reynolds stress levels in the wake behind the model turbine were also found to be significantly higher for the high turbulence inflow case, in comparison to those of the low turbulence inflow case. The flow characteristics in the turbine wake were found to be dominated by the formation, shedding, and breakdown of various unsteady wake vortices. In comparison with the case with relatively low turbulence intensities in the incoming ABL wind, much more turbulent and randomly shedding, faster dissipation, and earlier breakdown of the wake vortices were observed for the high turbulence inflow case, which would promote the vertical transport of kinetic energy by entraining more high-speed airflow from above to recharge the wake flow and result in a much faster recovery of the velocity deficits in the turbine wake. C 2014 AIP Publishing LLC.
منابع مشابه
Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind
An experimental study was conducted to characterize the dynamic wind loads and evolution of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind tunnel. In addition to measuring dynamic wind loads (i.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensi...
متن کاملAn Experimental Investigation on the Wake Characteristics behind a Novel Twin-Rotor Wind Turbine
An experimental study was performed to examine the wake characteristics and aeromechanic performance of an innovative twin-rotor wind turbine (TRWT) in comparison with those of a conventional single-rotor wind turbine (SRWT). The comparative study was conducted in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) wind tunnel with the TRWT and SRWT model sited in simulated atmospheric ...
متن کاملAn Experimental Investigation on Dynamic Wind Loads Acting on a Wind Turbine Model in Atomspheric Boundary Layer Winds
An experimental study was conducted to investigate the dynamic wind loads acting on a wind turbine model sited in atmospheric boundary layer winds. The experimental studies are conducted in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel available at Iowa State University. A three-blade Horizontal Axial Wind Turbine (HAWT) model was placed in atmospheric boundary layer w...
متن کاملA semi-analytical model for velocity profile at wind turbine wake using blade element momentum
The shape of wake behind a wind turbine is normally assumed to have a hat shape for the models used in wind farm layout optimization purposes; however, it is know from experimental tests and numerical simulations that this is not a real assumption. In reality, the results of actual measurements and detailed numerical simulation show that the velocity in wake region has a S-shape profile. Th...
متن کاملA semi-analytical model for velocity profile at wind turbine wake using blade element momentum
The shape of wake behind a wind turbine is normally assumed to have a hat shape for the models used in wind farm layout optimization purposes; however, it is know from experimental tests and numerical simulations that this is not a real assumption. In reality, the results of actual measurements and detailed numerical simulation show that the velocity in wake region has a S-shape profile. The pr...
متن کامل